26 research outputs found

    A theoretical framework for the ecological role of three-dimensional structural diversity

    Get PDF
    The three-dimensional (3D) physical aspects of ecosystems are intrinsically linked to ecological processes. Here, we describe structural diversity as the volumetric capacity, physical arrangement, and identity/traits of biotic components in an ecosystem. Despite being recognized in earlier ecological studies, structural diversity has been largely overlooked due to an absence of not only a theoretical foundation but also effective measurement tools. We present a framework for conceptualizing structural diversity and suggest how to facilitate its broader incorporation into ecological theory and practice. We also discuss how the interplay of genetic and environmental factors underpin structural diversity, allowing for a potentially unique synthetic approach to explain ecosystem function. A practical approach is then proposed in which scientists can test the ecological role of structural diversity at biotic–environmental interfaces, along with examples of structural diversity research and future directions for integrating structural diversity into ecological theory and management across scales

    Biogeosciences perspectives on integrated, coordinated, open, networked (ICON) science

    Full text link
    This article is composed of three independent commentaries about the state of ICON principles (Goldman et al. 2021) in the AGU Biogeosciences section and discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: Global collaboration, technology transfer and application (Section 2), Community engagement, citizen science, education, and stakeholder involvement (Section 3), and Field, experimental, remote sensing, and real-time data research and application (Section 4). We discuss needs and strategies for implementing ICON and outline short- and long-term goals. The inclusion of global data and international community engagement are key to tackle grand challenges in biogeosciences. Although recent technological advances and growing open-access information across the world have enabled global collaborations to some extent, several barriers ranging from technical to organizational to cultural have remained in advancing interoperability and tangible scientific progress in biogeosciences. Overcoming these hurdles is necessary to address pressing large-scale research questions and applications in the biogeosciences, where ICON principles are essential. Here, we list several opportunities for ICON, including coordinated experimentation and field observations across global sites, that are ripe for implementation in biogeosciences as a means to scientific advancements and social progress

    Biogeosciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science

    Get PDF
    This article is composed of three independent commentaries about the state of Integrated, Coordinated, Open, Networked (ICON) principles in the American Geophysical Union Biogeosciences section, and discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: (a) Global collaboration, technology transfer, and application (Section 2), (b) Community engagement, community science, education, and stakeholder involvement (Section 3), and (c) Field, experimental, remote sensing, and real-time data research and application (Section 4). We discuss needs and strategies for implementing ICON and outline short- and long-term goals. The inclusion of global data and international community engagement are key to tackling grand challenges in biogeosciences. Although recent technological advances and growing open-access information across the world have enabled global collaborations to some extent, several barriers, ranging from technical to organizational to cultural, have remained in advancing interoperability and tangible scientific progress in biogeosciences. Overcoming these hurdles is necessary to address pressing large-scale research questions and applications in the biogeosciences, where ICON principles are essential. Here, we list several opportunities for ICON, including coordinated experimentation and field observations across global sites, that are ripe for implementation in biogeosciences as a means to scientific advancements and social progress

    Biogeosciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science

    Get PDF
    This article is composed of three independent commentaries about the state of Integrated, Coordinated, Open, Networked (ICON) principles in the American Geophysical Union Biogeosciences section, and discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: (a) Global collaboration, technology transfer, and application (Section 2), (b) Community engagement, community science, education, and stakeholder involvement (Section 3), and (c) Field, experimental, remote sensing, and real-time data research and application (Section 4). We discuss needs and strategies for implementing ICON and outline short- and long-term goals. The inclusion of global data and international community engagement are key to tackling grand challenges in biogeosciences. Although recent technological advances and growing open-access information across the world have enabled global collaborations to some extent, several barriers, ranging from technical to organizational to cultural, have remained in advancing interoperability and tangible scientific progress in biogeosciences. Overcoming these hurdles is necessary to address pressing large-scale research questions and applications in the biogeosciences, where ICON principles are essential. Here, we list several opportunities for ICON, including coordinated experimentation and field observations across global sites, that are ripe for implementation in biogeosciences as a means to scientific advancements and social progress

    Landscape-scale benefits of protected areas for tropical biodiversity

    Get PDF
    We are indebted to numerous local communities, PA and government agency staff, research assistants, and other partners for supporting the field data collection. Research permissions were granted by appropriate forestry and conservation government departments in each country. Special thanks is given to the Sarawak State Government, Sarawak Forestry Corporation, Forest Department Sarawak, Sabah Biodiversity Centre, the Danum Valley Management Committee, the Forest Research Institute Malaysia (FRIM), the Smithsonian Institute and the Tropical Ecology Assessment and Monitoring (TEAM) network, Sarayudh Bunyavejchewin, and Ronglarp Sukmasuang. Support was provided by the United Nations Development Programme, NASA grants NNL15AA03C and 80NSSC21K0189, National Geographic Society’s Committee for the Research and Exploration award #9384–13, the Australian Research Council Discovery Early Career Researcher Award DECRA #DE210101440, the Universiti Malaysia Sarawak, the Ministry of Higher Education Malaysia, Nanyang Technological University Singapore, the Darwin Initiative, Liebniz-IZW, and the Universities of Aberdeen, British Columbia, Montana, and Queensland.Peer reviewedPostprin

    Components of forest soil CO2 efflux as estimated from 14C values of SOM

    Get PDF
    The partitioning of the total soil CO2 efflux into its two main components: respiration from roots (and root-associated organisms) and microbial respiration (by means of soil organic matter (SOM) and litter decomposition), is a major need in soil carbon dynamics studies in order to predict the net response of soil carbon stores to climate change. In this study, SOM-derived CO2 efflux was estimated for eleven forest sites as the sum of the ratios between the carbon stocks of different SOM pools and previously published (?14C derived) turnover times. The fraction of soil CO2 efflux derived from recently fixed carbon, including root and root-associated respiration, was calculated by subtracting the SOM-derived respiration component from total soil chamber measured CO2 efflux. Results suggested that, on average, ~ 50 % of total soil CO2 efflux derived from the respiration of the living roots, ~ 40 % from decomposition of the litter layers and less than 10 % from decomposition of belowground SOM;. Estimates of SOM-derived soil CO2 efflux in the current study were rather low compared with other two partitioning datasets However a major problem in the comparison could have been the high spatial variability of soil carbon and related variable

    Proceedings of the CLS Ph.D. Conference 1993

    No full text
    Item does not contain fulltext81 p

    Temperature sensitivity of the turnover times of soil organic matter in forests

    No full text
    Soils represent the largest carbon pool in the terrestrial biosphere, and climate change might affect the main carbon fluxes associated with this pool. These fluxes are the production of aboveground litter and root litter, and decomposition of the soil organic matter (SOM) pool by soil microorganisms. Knowledge about the temperature sensitivity of the decomposition of different SOM fractions is crucial in order to understand how climate change might affect carbon storage in soils. In this study, the temperature sensitivity of the turnover times of three different SOM fractions (labile, intermediate, and stabilized) was investigated for I I forest sites along a temperature gradient. Carbon-14 isotope analyses of the SOM fractions combined with a model provided estimates of their turnover times. The turnover times of the labile SOM fraction were not correlated with mean annual soil temperature. Therefore it was not possible to estimate temperature sensitivity for the labile SOM fraction. Given considerable evidence elsewhere for significant temperature sensitivities of labile SOM, lack of temperature sensitivity here most likely indicates limitations of the applied methodology for the labile SOM fraction. The turnover times of the intermediate and the stabilized SOM fractions were both correlated with mean annual soil temperatures. The temperature sensitivity of the stabilized SOM fraction was at least equal to that of the intermediate SOM fraction and possibly more than twice as high. A correction for confounding effects of soil acidity and clay content on the temperature sensitivities of the, intermediate and stabilized SOM fractions was included in the analysis. The results as observed here for the three SOM fractions may have been influenced by (1) modeling assumptions for the estimation of SOM turnover times of leaf and needle longevities, constant annual carbon inputs, and steady-state SOM pools, (2) the occurrence of summer drought at some sites, (3) differences between sites in quality of the SOM fractions, or (4) the relatively small temperature range. Our results suggested that a VC increase in temperature could lead to decreases in turnover times of 4-11% and 8-16%, for the intermediate and stabilized SOM fractions, respectively
    corecore